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Abstract 
 

Packet classification is one of the most critical 
techniques in many network devices such as Firewall, 
IDS and IPS, etc. In order to meet the performance 
requirement for high speed Internet (even higher than 10 
Gbps), practical algorithms must keep better spatial and 
temporal performance. Moreover, as the size of rule set is 
increasing to tens of thousands, novel packet 
classification algorithms must have good scalability. In 
this paper, we propose a novel packet classification 
algorithm named DBS (Discrete Bit Selection) which 
takes a bit level heuristic design to partition the rule set 
effectively.  

To the best of our knowledge, DBS is the first try to 
design a heuristic classification algorithm at bit-level. To 
evaluate the performance of our algorithm, DBS is 
deployed on a popular multi-core Network Processor 
platform, compared with two existing well-known 
algorithms. Experimental results show that DBS achieves 
300% higher throughput than HiCuts and HSM, while the 
memory requirement is reduced to about 10% averagely. 
DBS works well especially with large rule set (10K), 
which trends a good scalability. 
 
1. Introduction 
 

Real-time packet classification is a foundational 
technique for a variety of Internet applications including 
traffic monitoring, Quality of Service (QoS) and security. 
The algorithm of packet classification has been widely 
used in network processing devices such as firewall, 
intrusion detection system (IDS) and intrusion prevention 
system (IPS), etc. For example, packet classification plays 
an important role in IDS[1, 2] to classify packets into 
different flows. Though the problem of packet 
classification has been studied for many years, 
researchers are still motivated to design more efficient 
algorithm due to the continual growth of network 
bandwidth and the increasing complexity of network 

applications.  For example, 10 Gbps networks is required 
to transfer tens of millions 64-byte packets per second.   

In the view of computational geometry[3], the problem 
of multi-field packet classification can be considered as a 
problem of point location in multi-dimensional space. It 
has been proven that the complexity bounds for n objects 
in k (k > 2) dimensions space are O(logn) in time while 
O(nk) in storage, or O(logk-1n) in time while O(n) in 
storage[4]. This theoretical performance is unacceptable 
in practice case, as many papers have pointed out. 
Researchers have been trying to design faster algorithms 
by process the rule set using heuristic methods[5, 6]. 

In this paper, we propose a novel approach that can 
perform well both on spatial and temporal performance 
(We have discussed a preliminary idea at[7] before). The 
algorithm is motivated by intuitive observation on the 
classification operations of some advanced heuristic 
algorithms, such as HiCuts. We introduce a more granular 
level heuristic design in which rule set will be partitioned 
more effectively. This method is amendable to be 
implemented at software platform, hardware platform or 
combined ones. The performance is evaluated on a real 
multi-core Network Processor (NP) platform in this paper. 

Main contributions of this paper are: 
1) A Bit-level Heuristic Packet Classification 

Algorithm 
The algorithm proposed in this paper, adopts a bit-

level heuristic to detect the inherent characteristics of the 
rule set. Due to the bit level heuristic, rule sets can be 
partitioned more efficiently, thus the storage required for 
data structures is significantly reduced. At the same time, 
to guarantee the speed of classification, two levels of flat 
structures are adopted, which require only two memory 
access times while searching.  
2) Performance Evaluation on NP 

To validate the performance of DBS on real NP 
platform, we built the classification application on the 
Cavium OCTEON 5860 network processor[8]; for 
comparison, we also implemented the traditional well-
known algorithms: HiCuts[6] and HSM[9] on the same 
NP platform. Experimental results show that DBS 
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outperforms these existing best-known algorithms in 
terms of both spatial performance and temporal 
performance. 

The remaining part of the paper is organized as 
follows: 

Section 2 gives an introduction of related work; 
Section 3 illustrates the designing details of DBS while 
section 4 shows the experimental results of DBS, 
comparing with some well known algorithms; Conclusion 
and future works are discussed in section 5 and 6. 

 
2. Related Work 

 
Currently there are two major types of implementation 

of packet classification algorithms on commercial 
products: software-based implementation on general-
purpose processor (such as IA CPU) and hardware-based 
ones on Application Specific Integrated Circuits (ASIC). 
1) Software-based implementation 

Although it is theoretically hard[4] to commonly 
deploy one single algorithm that works well for all cases, 
many effective algorithms were designed to improve 
performance in various practical cases, leveraging on the 
inherent characteristics of the real-life rule sets. Those 
algorithms fall into two categories: field-independent 
ones, such as RFC[10] and HSM[9], and field-dependent 
ones, including HiCuts[6] and HyperCuts[11]. Take the 
IPv4 protocol for example, the header of a packet 
contains 104 bits in 5 tuples, including two 32-bit fields 
(source and destination IP addresses), two 16-bit fields 
(source and destination ports), and one 8-bit filed 
(protocol type).  These software-based algorithms could 
be categorized as below: 

 Field-independent algorithms 
Field-independent algorithms usually build their 

search structure in two steps: first use each of the 5 tuples 
data to build separate structures independently first, and 
then group them together. RFC and HSM perform 
independent parallel searches on indexed tables, and the 
results of the searches are combined into a final search 
result in several phases. Although these algorithms are 
fast in classification speed, they might require relatively 
large memory storage to store the search tables. 

 Field-dependent algorithms 
This type of algorithms treat different fields data 

dependently, thus usually grouping is not necessary at the 
final stage. HiCuts and HyperCuts both take intelligent 
and relatively simple decision-tree structures and heuristic 
methods to choose the field to cut. Since the field-
dependent algorithms exploit more inherent relationship 
between different fields when building the decision tree, 
they typically achieve better tradeoff between time and 
space in practical cases. Although in most cases, these 
algorithms require less memory storage than field-

independent search algorithms, however they cannot 
ensure a stable worst-case classification speed.  

Although a lot of software-based algorithms have been 
proposed, most of them stagnate in theoretical analysis 
and simulation, without being widely implemented in 
commercial products. 
2) Hardware-based implementation 

Traditional network devices based on ASIC such as 
routers can achieve multi-Gbps processing speed, 
however, these devices are only limited to be used at the 
backbones[12], due to several issues: 

 Programmability 
Most of the ASIC architectures have special design for 

high performance which in turn leads to less general 
programming ability. This trends a tradeoff between 
performance and programmability. 

 Special Chips Required 
Special chips like Ternary CAMs can accelerate the 

packet processing speed. However, it requires too much 
power and board area to support large number of 
classification rules. Also, special chips usually mean 
higher cost, longer time-to-market and more difficulties in 
product upgrade. 

Today, some researchers [12, 13] are seeking to 
combine the intelligence of software-based solution and 
the performance of hardware-based architectures, with the 
help of multi-core network processors (NP), which can 
support both flexible software programmability and 
powerful hardware-level packet processing.  
 
3. DBS Algorithm   
 

DBS is designed basing on two principles: (i) Use bit-
level heuristics to split rules efficiently, and (ii) Adopt 
adaptive flat data structures to guarantee fast searching 
with low memory requirement. In this section, we will 
discuss the details of algorithm design. Table 1 shows a 
simple rule set example helping for discussion. Each rule 
only contains two tuples, while each tuple has two bits, so 
the whole length of one rule is four. Notice that although 
the example only shows prefix lookup, packet 
classification also needs range lookup for port tuples. 
However, a range can always be represented by one or 
several prefixes (see [13]). 

 
Table 1 A simple example of rule set 
Rule id tuple 1 tuple 2 

#1 00 00 
#2 00 01 
#3 01 00 
#4 01 01 
#5 ** ** 
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3.1. Data structure 
 
To describe the algorithm better, let’s define some 

notations for the data structures used first: 
 
E-bit 
Consider the rule set in Table 1, each of the four bits at 

two tuples can split the rule set into two parts. For 
example, the first bit can split the rule set into 5 rules 
(which can get 0 at the first bit) and 1 rule (which can get 
1 at the first bit). Other bits can also split rules into 3+3, 
5+1 and 3+3. We can see that the second (or the fourth bit) 
minimizes the sub sets’ size (the max size is 3), which 
means an effective partition. Such bit is named as 
“effective bit”, or “e-bit” for short. Since e-bits will be 
the best ones to split rules apart; they can partition the 
rules effectively, even the size of rule set is quite large. 
Thus by checking several e-bits of a packet header, a 
large amount of rules that not match can be avoid during 
searching. 

Mask vector 
After selecting the e-bits of an L bits (for IPv4, L = 

104) packet header H, a mask vector V with the same 
length can be defined as: 

V[i] = 1, only if H[i] is an e-bit; 
V[i] = 0, otherwise.  
where V[i] means the i-th bit of V, and H[i] means the i-

th bit of H, i = 1, 2,….L. 
Notice the number of e-bits in the mask vector is 

always no larger than L, we define this number as l. 
Also take the example in Table 1, if we select the 

second and the fourth bits as e-bits, then those two 
position of mask vector should be set to 1.Finally, we get 
the mask vector is: V  = (0101), while the number of e-
bits is two. 

 
3.2. Preparation phase 

 
The preparation phase includes two steps: the mask 

vector generation and the lookup table construction. 
a) Mask Vector Generation 
Suppose the number of rules in R is N(R), with 

different V, R can be divided into different m subsets: S1, 
S2, …Sm (m = 2l).  To select e-bits, we define a function w 
as the weight function.  Here with different weight 
functions, different heuristic partition methods will be 
taken. 

In this paper, we define w as: w = MAX(N(Si)), Where 
N(Si) is the size of subset Si, because we try to minimize 
the subsets with the mask vector. 

Our motivation is to select the most effective mask-
vector which can split R into subsets as small as possible. 
Since we try to design the algorithm with good scalability, 
exhaustive selection is unpractical. Here two heuristic 
schemes are proposed. Though these two schemes are not 
the most optimized ones, they are simple and efficient for 
the selection. There are also some other novel algorithms 
for feature selection[14].  

Sequential Forward Selection (SFS): This scheme 
starts with one bit and incrementally selects the others 
with checking w function value each step. First we select 
the most effective bit b0 and partition the current rule set 
into two subsets.  Then try to select another bit b1 which 
trends the smallest w function value. Continue these first 
two steps until enough e-bits are selected. There are also 
other similar approaches such as sequential backward 
elimination(see [15]). 

Heuristic Swap (HS): This scheme try to swap some 
bits of a given match vector to get smaller w function 
value. First we choose l e-bits from the 104 bits randomly 
and get the initial V0, to divide R into 2l subsets, and 
calculate out the w function value w0. Then we try to 
swap each e-bit from V0 with one from the unselected bits 
and get new w function value w1. If w1 < w0, then accept 
the swapping, or else keep the bit and try the next one. To 
get better V this scheme can be repeated after trying to 
swap all bits in the original V. 

 
 

id rule
#1 0000
#2 0001
#3 0100
#4 010*
#5 ****

id rule
#1 0000
#2 0001
#5 ****

id rule
#3 0100
#4 0101
#5 ****

iidd rruullee
#1 0000
#5 ****

id rule
#2 0001
#5 ****

0 1

id rule
#3 0100
#5 ****

iidd rruullee
#4 0101
#5 ****

0 1 0 1

take the 2nd bit

take the fourth bit

block id 0 1 2 3
rules #1, #5 #2, #5 #3, #5 #4, #5

Figure 1 Preparation phase example of DBS 
 

id rule
#1 0000
#2 0001
#3 0100
#4 0101
#5 ****

id rule
#1 0000
#2 0001
#3 0100
#4 0101
#5 ****

id rule
#5 ****

id rule
#1 0000
#2 0001
#5 ****

id rule
#3 0100
#4 0101
#5 ****

id rule
#1 0000
#2 0001
#5 ****

iidd rruullee
#5 ****

id rule
#3 0100
#4 0101
#5 ****

id rule
#5 ****

id rule
#1 0000
#5 ****

id rule
#2 0001
#5 ****

id rule
#3 0100
#5 ****

id rule
#4 0101
#5 ****

0 1

0 1

0 1 0 1

0 10 1

cut at tuple 1

cut at tuple 1

cut at tuple 2 cut at tuple 2

cut at tuple 2 cut at tuple 2

 
Figure 2 Example of HiCuts 
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b) Lookup Table Construction 
After the generation of v, the lookup table can be 

constructed with the following steps:  
1) Set up a table T with length m (m = 2l), where 

each cell T[i] stores a pointer to a storage block. 
Then for each rule ri in R, do the next two steps; 

2) Use V to mask out the e-bits and combine these 
bits as an index vector. Notice that the bit value of 
this index vector may be 0, 1 or * (* means both 0 
and 1).  

3) Fill ri into the cells with the matched index. 
In Figure 1, we give an example to use SFS to 

generate the mask vector for rules in Table 1, and then 
use mask vector to generate the lookup table. In this 
example, we take two steps to partition the rule set. Each 
step we only take one bit, at last we use only two bits to 
partition rule set into four sub ones, among which the 
largest one contains two rules. 

Other field-level heuristic algorithms like HiCuts also 
can do the similar partition processing with a rules 
splitting trie structure, however, since the splitting is at 
field level, more bits are employed. Figure 2 shows the 
processing using HiCuts algorithm. We can see only with 
all four bits HiCuts can cut the rule set into sub ones no 

more than two rules. 
3.3. Classification Phase 

 
With match vector V and the lookup table T, the 

classification can be finished in two steps: 
1) Filter out l e-bits from each incoming packet’s 

header with V, and combine them into a binary 
vector, take this vector’s value as the lookup 
index i. 

2) Index in the lookup table to get T[i], and check the 
rules in the block pointed by T[i] and find the best 
matched one.  

The pseudo code for classification is as depicted as 
below: 

 
00
 
01
 
02
03
04
05
06
07
08
09

int DBS_Classify(Vector mask_vector, 
Header hdr, Table lookup_table) { 

/*Step 1: mask out the e-bits in the packet 
header, and calculate the index value*/  

Vector index_vector = mask_vector & hdr; 
int index = CalculateIndex(index_vector); 
/*Step 2: index to blocks, and 

lookup_tablekup in blocks.*/  
Block block = lookup_table[index];  
int result = Lookup(block,hdr); 
 return result; 
 } 

 
Figure 3 shows an simple example for the 

classification process of DBS. Since most blocks only 
contain few rules, the searching inside a block will be fast. 
Moreover, heuristic searching technologies can also be 
taken recursively inside.  

As the rules in a block are stored continuously in 
memory space, network processors with cache like 
Cavium Octeon can take advantage. From this example, 
we can see that DBS only requires two memory access 
times to reach the rule block after the bit masking. The bit 
masking step is fast because this several bits operation 
can be done within cache, and special hardware can 
accelerate this step. 

 
4. Experiments and Performance Analysis 

 
To evaluate the performance of DBS objectively, we 

compare the algorithm’s performance with HSM and 
HiCuts on four aspects: the spatial performance, the 
temporal performance, the scalability of the spatial 
performance and the throughput on NP.  

To reach a good tradeoff between space and speed, we 
just set the number of e-bits to 16, which means we take 
16 bits from the packet header for the partition. At the 
same time, because HiCuts uses linear searching inside 
leaf node to get a tradeoff between storage and speed, we 

block id 0 1 2 3
rules #1, #5 #2, #5 #3, #5 #4, #5

packet
header

tuple 1 tuple 2
0 0 0 1

0 1 0 1 mask vector

index_value = 0 1

use index to get matched blcok

lookup inside blcok, and get rule_match

rule_match = #2  
Figure 3 Classification example of DBS 

 

Figure 4 Block diagram of CN58XX
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actually implement two versions of HiCuts with different 
sizes of leaf node: HiCuts-1 (only 1 rule in each leaf node) 
and HiCuts-8 (up to 8 rules in each leaf node). Thus, 
there are four implementations for three algorithms to 
compare: HiCuts-1, HiCuts-8, HSM, and DBS. All the 
algorithms are not only simulated by software, but also 
evaluated on a commercial NP platform. 

 
4.1. Experiment Setup 

 
4.1.1 Rule sets and traffic data 
 

The experiments are carried out with publicly 
available real-life rule sets[16]. All the packet 
classification algorithms are evaluated on three different 
types of real-life rule sets, containing Access Control List 
(ACL), FireWall (FW) and IP Chain (IPC). We use 12 
rule sets with different sizes from several hundreds to 
about ten thousand, e.g. the ACL1-10K rule set contains 
about 10,000 rules. All rules in the sets are of 5 tuples 
with 32-bit source/destination IP addresses, 16-bit 
source/destination port numbers, and 8-bit transport layer 
protocol. More details about the rule sets can be found 
at[16]. 

The traffic for experiments is generated by Spirent 
SmartBits 600B performance analysis system[17], which 
supports up to 4 SmartMetrics Gigabit Ethernet ports. 
Since there are 3 Gigabit Ethemet ports at the frontend of 

the NP testbed, the full throughput of experiments are 
limited up to 3 Gbps. 

 
4.1.2. Test bed 
 

The software simulation results are obtained on a PC 
(2.0GHz dual-core, 4GB DDRII memory), while all 
programs are C-code and complied with -O2 option under 
Ubuntu 8.04 Linux system. 

The performance of throughput is evaluated on the 
Cavium OCTEON 5860 multi-core platform. 

Figure 4 shows the block diagram[18] of CN58XX 
series multi-core platform. Each Cavium OCTEON 
CN5860 processor contains 16 cnMIPS64 running at 750 
MHz; the memory include 4 GB DDR2 SDRAM with 
2MB L2 cache shared among all cores. There are two 
programming modes provided by Cavium SDK: Linux 
mode (with a Linux OS) and Simple Executive mode 
(without OS supporting). We program codes at the 
Simple Executive mode for fast packet processing. 

 
4.2. Performance Results 
 
4.2.1. Memory Access Times 

 
Both average-case and worst-case memory access 

times are illustrated in Figure 5 and Figure 6. As  Figure 5 
shows that DBS has the least average-case access times, 
in most rule sets, the average-case access times is only 
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about 5% ~ 10% of that of HiCuts (both HiCuts-1 and 
HiCuts-8), while 10% ~ 20% of that of HSM. From 
Figure 6, we can see that the worst-case access time of 
DBS is only about 30% of that of HiCuts (both HiCuts-1 
and HiCuts-8), while is nearly the same with that of HSM.  

We notice that HiCuts-8 needs more memory access 
times than HiCuts-1 in average case. This is because the 
linear searching inside leaf nodes increases the access 
times. Though DBS also adopts linear searching inside 
blocks, however, the size of blocks can be keep small 
because of the effective partition. 
 
4.2.2. Memory Storage 

 
In Figure 7, we can see that the memory used by DBS 

is at least an order of magnitude less than that of HSM 
and HiCuts for most of the rule sets, especially for large 
ones (such as ACL1-10K, FW1-10K and IPC1-10K). 
Take rule set ACL1-10K for example, both HSM and 
HiCuts-1 require about 25 ~ 40 MB memory while DBS 
only requires about 1 MB.  Though with rule set acl1 and 
acl_1K, HiCuts-8 can obtain better space performance 
than DBS, however, it requires more than DBS in all 
other rule sets, especially with large or complex ones. 

We also notice that the memory required by all the 
algorithms on FW rule sets is larger than ACL and IPC 
ones. This indicates that FW rule sets have more 

complicated inherent structures. For the same size, rule 
sets of FW will generate more complicated sub-spaces in 
the multi-dimensional classification space than ACL and 
IPC rule sets. We think FW rule sets can validate the 
robustness of classification algorithm. With the largest 
FW rule set (FW1-10K), only DBS can finish the 
processing with requiring less than 10 MB memory, while 
both HSM and HiCuts (HiCuts-1 and HiCuts-8) are failed 
to finish building for too much storage required (larger 
than 4 GB). 
 
4.2.3. Scalability of Spatial Performance 

 
We also evaluated the scalability of storage 

requirement for all the three algorithms. We believe this 
is another important evaluation factor for packet 
classification algorithms because the size of classification 
rule set is growing larger quickly while large  and cheap 
low latency access memory units (SRAM, etc.) are still 
not easy to be designed. Thus if one algorithm has a weak 
scalability, it will not work well with larger and more 
complex rule sets in the future, even it can perform well 
at current rule sets.  

In Figure 8, we give the result of the spatial 
performance with different sizes of the ACL rule sets, 
which shows that DBS performs a better scalability than 
the other three algorithms. With rule set growing 10 times 
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larger (from ACL1-1K to ACL1-10K), the memory 
occupied by DBS only doubles, while that by other 
algorithms become about ten times more. 

 
4.2.4. Throughput Performance 

 
Figure 9~Figure 12 show the evaluation results of 

throughput performance on Cavium OCTEON 5860 
multi-core platform. The rule set is ACL1-10K, which is 
the largest one that HiCuts and HSM can process 
successfully. 

Figure 9 and Figure 10 show the average-case and 
worst-case throughput performance with different number 
of cores while the packet size is 64 Bytes. For the 
minimum 64 Bytes Ethernet packet, only DBS can 
achieve nearly 100% throughput (3Gbps) with 2 cores in 
average, while HiCuts-8 and HSM need 8 cores, and 
HiCuts-1 cannot achieve the full throughput even with all 
the 16 cores. Even in the worst-case, DBS is the only one 
which reach 100% throughput with 4 cores. 

Figure 11 and Figure 12 show the throughput results 
on only 1 MIPS core with different packet sizes (64 Bytes 
~ 1518Bytes). When input packet is 128 bytes, DBS can 
reach nearly 100% throughput in average-case and higher 
than 60% (about 2 Gbps) in worst-case. This result is 
about 300% higher than all other three algorithms.  
 
4.3. Discussion 
 

Theoretically, DBS has the same worst-case memory 
access time with HiCuts; however, with granular 
heuristics, DBS can gain better performance with real-life 
rule sets. At the same time, more effective partition can 
reduce the storage requirement. This indicated that rule 
set based decomposition algorithms may obtain more 
advantage than space decomposition ones. 

When comparing the spatial performance, we notice 
that for small and simple rule sets (acl1 and acl_1K), 
DBS requires more storage than HiCuts-8, while for large 
or complicated rule sets, DBS works better. There is 
several reasons: first the structure of trie uses less internal 
nodes when leaf node is large for small rule set; secondly, 
DBS use a fixed 216 = 65,536 size lookup tables, this 
means a large number of redundancies of the default rule. 
While for large and complicated rule sets, trie structure 
will need more steps to cut, which need more internal 
nodes. 
 
5. Conclusion and Future Work 
 

In this paper, we propose a new bit-level heuristic 
algorithm for multi-dimensional packet classification 
called Discrete Bit Selection (DBS). Unlike other existing 
solutions, this algorithm takes advantage of a heuristic 
partition of rule set at bit level, which allows it to better 

explore the inherent characteristics in rule set and split 
rules more effectively. In order to evaluate the 
performance of the proposed algorithm, we implement 
DBS on a real NP platform, along with some other well-
known algorithms such as HSM and HiCuts. 
Experimental results on Cavium OCTEON NP platform 
show that DBS achieves superior temporal and spatial 
performance to the existing algorithm in most cases, 
especially when testing with large rule sets, which are 
expected to be the trend of the next generation Internet. 
Specially, DBS also achieves better scalability with 
different sizes of rule sets, which indicate it can work 
robustly with even larger rule sets in future. 

Although the experimental results are encouraging, 
current work is still preliminary. In this paper, we set a 
determinate number of e-bits; however heuristics can be 
utilized to get proper number of e-bits with different 
environments (rule sets, platform, etc.). This would dig 
out more potential of DBS, and make DBS more practical 
and robust with more complicated and more compressive 
classification problems. Another interesting problem is 
the generation schemes of mask vector. Though there are 
many feature selection approaches, a special light-weight 
one will be more reliable. And we plan to evaluation DBS 
with more rule sets in more types of platforms. 
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