
DBS: A Bit-level Heuristic Packet Classification Algorithm for High Speed
Network

Baohua Yang*,†, Xiang Wang , Yibo Xue†,‡ and Jun Li†,‡

*Dept. Automation, Tsinghua University
Research Institute of Information Technology, Tsinghua University

Tsinghua National Lab for Information Science and Technology, Beijing, China
School of software engineering, University of Science and Technology of China, Hefei, China
ybh07@mails.tsinghua.edu.cn, kojiroh@mail.ustc.edu.cn, {yiboxue, junl}@tsinghua.edu.cn

Abstract

Packet classification is one of the most critical
techniques in many network devices such as Firewall,
IDS and IPS, etc. In order to meet the performance
requirement for high speed Internet (even higher than 10
Gbps), practical algorithms must keep better spatial and
temporal performance. Moreover, as the size of rule set is
increasing to tens of thousands, novel packet
classification algorithms must have good scalability. In
this paper, we propose a novel packet classification
algorithm named DBS (Discrete Bit Selection) which
takes a bit level heuristic design to partition the rule set
effectively.

To the best of our knowledge, DBS is the first try to
design a heuristic classification algorithm at bit-level. To
evaluate the performance of our algorithm, DBS is
deployed on a popular multi-core Network Processor
platform, compared with two existing well-known
algorithms. Experimental results show that DBS achieves
300% higher throughput than HiCuts and HSM, while the
memory requirement is reduced to about 10% averagely.
DBS works well especially with large rule set (10K),
which trends a good scalability.

1. Introduction

Real-time packet classification is a foundational
technique for a variety of Internet applications including
traffic monitoring, Quality of Service (QoS) and security.
The algorithm of packet classification has been widely
used in network processing devices such as firewall,
intrusion detection system (IDS) and intrusion prevention
system (IPS), etc. For example, packet classification plays
an important role in IDS[1, 2] to classify packets into
different flows. Though the problem of packet
classification has been studied for many years,
researchers are still motivated to design more efficient
algorithm due to the continual growth of network
bandwidth and the increasing complexity of network

applications. For example, 10 Gbps networks is required
to transfer tens of millions 64-byte packets per second.

In the view of computational geometry[3], the problem
of multi-field packet classification can be considered as a
problem of point location in multi-dimensional space. It
has been proven that the complexity bounds for n objects
in k (k > 2) dimensions space are O(logn) in time while
O(nk) in storage, or O(logk-1n) in time while O(n) in
storage[4]. This theoretical performance is unacceptable
in practice case, as many papers have pointed out.
Researchers have been trying to design faster algorithms
by process the rule set using heuristic methods[5, 6].

In this paper, we propose a novel approach that can
perform well both on spatial and temporal performance
(We have discussed a preliminary idea at[7] before). The
algorithm is motivated by intuitive observation on the
classification operations of some advanced heuristic
algorithms, such as HiCuts. We introduce a more granular
level heuristic design in which rule set will be partitioned
more effectively. This method is amendable to be
implemented at software platform, hardware platform or
combined ones. The performance is evaluated on a real
multi-core Network Processor (NP) platform in this paper.

Main contributions of this paper are:
1) A Bit-level Heuristic Packet Classification

Algorithm
The algorithm proposed in this paper, adopts a bit-

level heuristic to detect the inherent characteristics of the
rule set. Due to the bit level heuristic, rule sets can be
partitioned more efficiently, thus the storage required for
data structures is significantly reduced. At the same time,
to guarantee the speed of classification, two levels of flat
structures are adopted, which require only two memory
access times while searching.
2) Performance Evaluation on NP

To validate the performance of DBS on real NP
platform, we built the classification application on the
Cavium OCTEON 5860 network processor[8]; for
comparison, we also implemented the traditional well-
known algorithms: HiCuts[6] and HSM[9] on the same
NP platform. Experimental results show that DBS

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.53

260

outperforms these existing best-known algorithms in
terms of both spatial performance and temporal
performance.

The remaining part of the paper is organized as
follows:

Section 2 gives an introduction of related work;
Section 3 illustrates the designing details of DBS while
section 4 shows the experimental results of DBS,
comparing with some well known algorithms; Conclusion
and future works are discussed in section 5 and 6.

2. Related Work

Currently there are two major types of implementation

of packet classification algorithms on commercial
products: software-based implementation on general-
purpose processor (such as IA CPU) and hardware-based
ones on Application Specific Integrated Circuits (ASIC).
1) Software-based implementation

Although it is theoretically hard[4] to commonly
deploy one single algorithm that works well for all cases,
many effective algorithms were designed to improve
performance in various practical cases, leveraging on the
inherent characteristics of the real-life rule sets. Those
algorithms fall into two categories: field-independent
ones, such as RFC[10] and HSM[9], and field-dependent
ones, including HiCuts[6] and HyperCuts[11]. Take the
IPv4 protocol for example, the header of a packet
contains 104 bits in 5 tuples, including two 32-bit fields
(source and destination IP addresses), two 16-bit fields
(source and destination ports), and one 8-bit filed
(protocol type). These software-based algorithms could
be categorized as below:

 Field-independent algorithms
Field-independent algorithms usually build their

search structure in two steps: first use each of the 5 tuples
data to build separate structures independently first, and
then group them together. RFC and HSM perform
independent parallel searches on indexed tables, and the
results of the searches are combined into a final search
result in several phases. Although these algorithms are
fast in classification speed, they might require relatively
large memory storage to store the search tables.

 Field-dependent algorithms
This type of algorithms treat different fields data

dependently, thus usually grouping is not necessary at the
final stage. HiCuts and HyperCuts both take intelligent
and relatively simple decision-tree structures and heuristic
methods to choose the field to cut. Since the field-
dependent algorithms exploit more inherent relationship
between different fields when building the decision tree,
they typically achieve better tradeoff between time and
space in practical cases. Although in most cases, these
algorithms require less memory storage than field-

independent search algorithms, however they cannot
ensure a stable worst-case classification speed.

Although a lot of software-based algorithms have been
proposed, most of them stagnate in theoretical analysis
and simulation, without being widely implemented in
commercial products.
2) Hardware-based implementation

Traditional network devices based on ASIC such as
routers can achieve multi-Gbps processing speed,
however, these devices are only limited to be used at the
backbones[12], due to several issues:

 Programmability
Most of the ASIC architectures have special design for

high performance which in turn leads to less general
programming ability. This trends a tradeoff between
performance and programmability.

 Special Chips Required
Special chips like Ternary CAMs can accelerate the

packet processing speed. However, it requires too much
power and board area to support large number of
classification rules. Also, special chips usually mean
higher cost, longer time-to-market and more difficulties in
product upgrade.

Today, some researchers [12, 13] are seeking to
combine the intelligence of software-based solution and
the performance of hardware-based architectures, with the
help of multi-core network processors (NP), which can
support both flexible software programmability and
powerful hardware-level packet processing.

3. DBS Algorithm

DBS is designed basing on two principles: (i) Use bit-
level heuristics to split rules efficiently, and (ii) Adopt
adaptive flat data structures to guarantee fast searching
with low memory requirement. In this section, we will
discuss the details of algorithm design. Table 1 shows a
simple rule set example helping for discussion. Each rule
only contains two tuples, while each tuple has two bits, so
the whole length of one rule is four. Notice that although
the example only shows prefix lookup, packet
classification also needs range lookup for port tuples.
However, a range can always be represented by one or
several prefixes (see [13]).

Table 1 A simple example of rule set
Rule id tuple 1 tuple 2

#1 00 00
#2 00 01
#3 01 00
#4 01 01
#5 ** **

261

3.1. Data structure

To describe the algorithm better, let’s define some

notations for the data structures used first:

E-bit
Consider the rule set in Table 1, each of the four bits at

two tuples can split the rule set into two parts. For
example, the first bit can split the rule set into 5 rules
(which can get 0 at the first bit) and 1 rule (which can get
1 at the first bit). Other bits can also split rules into 3+3,
5+1 and 3+3. We can see that the second (or the fourth bit)
minimizes the sub sets’ size (the max size is 3), which
means an effective partition. Such bit is named as
“effective bit”, or “e-bit” for short. Since e-bits will be
the best ones to split rules apart; they can partition the
rules effectively, even the size of rule set is quite large.
Thus by checking several e-bits of a packet header, a
large amount of rules that not match can be avoid during
searching.

Mask vector
After selecting the e-bits of an L bits (for IPv4, L =

104) packet header H, a mask vector V with the same
length can be defined as:

V[i] = 1, only if H[i] is an e-bit;
V[i] = 0, otherwise.
where V[i] means the i-th bit of V, and H[i] means the i-

th bit of H, i = 1, 2,….L.
Notice the number of e-bits in the mask vector is

always no larger than L, we define this number as l.
Also take the example in Table 1, if we select the

second and the fourth bits as e-bits, then those two
position of mask vector should be set to 1.Finally, we get
the mask vector is: V = (0101), while the number of e-
bits is two.

3.2. Preparation phase

The preparation phase includes two steps: the mask

vector generation and the lookup table construction.
a) Mask Vector Generation
Suppose the number of rules in R is N(R), with

different V, R can be divided into different m subsets: S1,
S2, …Sm (m = 2l). To select e-bits, we define a function w
as the weight function. Here with different weight
functions, different heuristic partition methods will be
taken.

In this paper, we define w as: w = MAX(N(Si)), Where
N(Si) is the size of subset Si, because we try to minimize
the subsets with the mask vector.

Our motivation is to select the most effective mask-
vector which can split R into subsets as small as possible.
Since we try to design the algorithm with good scalability,
exhaustive selection is unpractical. Here two heuristic
schemes are proposed. Though these two schemes are not
the most optimized ones, they are simple and efficient for
the selection. There are also some other novel algorithms
for feature selection[14].

Sequential Forward Selection (SFS): This scheme
starts with one bit and incrementally selects the others
with checking w function value each step. First we select
the most effective bit b0 and partition the current rule set
into two subsets. Then try to select another bit b1 which
trends the smallest w function value. Continue these first
two steps until enough e-bits are selected. There are also
other similar approaches such as sequential backward
elimination(see [15]).

Heuristic Swap (HS): This scheme try to swap some
bits of a given match vector to get smaller w function
value. First we choose l e-bits from the 104 bits randomly
and get the initial V0, to divide R into 2l subsets, and
calculate out the w function value w0. Then we try to
swap each e-bit from V0 with one from the unselected bits
and get new w function value w1. If w1 < w0, then accept
the swapping, or else keep the bit and try the next one. To
get better V this scheme can be repeated after trying to
swap all bits in the original V.

id rule
#1 0000
#2 0001
#3 0100
#4 010*
#5 ****

id rule
#1 0000
#2 0001
#5 ****

id rule
#3 0100
#4 0101
#5 ****

iidd rruullee
#1 0000
#5 ****

id rule
#2 0001
#5 ****

0 1

id rule
#3 0100
#5 ****

iidd rruullee
#4 0101
#5 ****

0 1 0 1

take the 2nd bit

take the fourth bit

block id 0 1 2 3
rules #1, #5 #2, #5 #3, #5 #4, #5

Figure 1 Preparation phase example of DBS

id rule
#1 0000
#2 0001
#3 0100
#4 0101
#5 ****

id rule
#1 0000
#2 0001
#3 0100
#4 0101
#5 ****

id rule
#5 ****

id rule
#1 0000
#2 0001
#5 ****

id rule
#3 0100
#4 0101
#5 ****

id rule
#1 0000
#2 0001
#5 ****

iidd rruullee
#5 ****

id rule
#3 0100
#4 0101
#5 ****

id rule
#5 ****

id rule
#1 0000
#5 ****

id rule
#2 0001
#5 ****

id rule
#3 0100
#5 ****

id rule
#4 0101
#5 ****

0 1

0 1

0 1 0 1

0 10 1

cut at tuple 1

cut at tuple 1

cut at tuple 2 cut at tuple 2

cut at tuple 2 cut at tuple 2

Figure 2 Example of HiCuts

262

b) Lookup Table Construction
After the generation of v, the lookup table can be

constructed with the following steps:
1) Set up a table T with length m (m = 2l), where

each cell T[i] stores a pointer to a storage block.
Then for each rule ri in R, do the next two steps;

2) Use V to mask out the e-bits and combine these
bits as an index vector. Notice that the bit value of
this index vector may be 0, 1 or * (* means both 0
and 1).

3) Fill ri into the cells with the matched index.
In Figure 1, we give an example to use SFS to

generate the mask vector for rules in Table 1, and then
use mask vector to generate the lookup table. In this
example, we take two steps to partition the rule set. Each
step we only take one bit, at last we use only two bits to
partition rule set into four sub ones, among which the
largest one contains two rules.

Other field-level heuristic algorithms like HiCuts also
can do the similar partition processing with a rules
splitting trie structure, however, since the splitting is at
field level, more bits are employed. Figure 2 shows the
processing using HiCuts algorithm. We can see only with
all four bits HiCuts can cut the rule set into sub ones no

more than two rules.
3.3. Classification Phase

With match vector V and the lookup table T, the

classification can be finished in two steps:
1) Filter out l e-bits from each incoming packet’s

header with V, and combine them into a binary
vector, take this vector’s value as the lookup
index i.

2) Index in the lookup table to get T[i], and check the
rules in the block pointed by T[i] and find the best
matched one.

The pseudo code for classification is as depicted as
below:

00

01

02
03
04
05
06
07
08
09

int DBS_Classify(Vector mask_vector,
Header hdr, Table lookup_table) {

/*Step 1: mask out the e-bits in the packet
header, and calculate the index value*/

Vector index_vector = mask_vector & hdr;
int index = CalculateIndex(index_vector);
/*Step 2: index to blocks, and

lookup_tablekup in blocks.*/
Block block = lookup_table[index];
int result = Lookup(block,hdr);
 return result;
 }

Figure 3 shows an simple example for the

classification process of DBS. Since most blocks only
contain few rules, the searching inside a block will be fast.
Moreover, heuristic searching technologies can also be
taken recursively inside.

As the rules in a block are stored continuously in
memory space, network processors with cache like
Cavium Octeon can take advantage. From this example,
we can see that DBS only requires two memory access
times to reach the rule block after the bit masking. The bit
masking step is fast because this several bits operation
can be done within cache, and special hardware can
accelerate this step.

4. Experiments and Performance Analysis

To evaluate the performance of DBS objectively, we

compare the algorithm’s performance with HSM and
HiCuts on four aspects: the spatial performance, the
temporal performance, the scalability of the spatial
performance and the throughput on NP.

To reach a good tradeoff between space and speed, we
just set the number of e-bits to 16, which means we take
16 bits from the packet header for the partition. At the
same time, because HiCuts uses linear searching inside
leaf node to get a tradeoff between storage and speed, we

block id 0 1 2 3
rules #1, #5 #2, #5 #3, #5 #4, #5

packet
header

tuple 1 tuple 2
0 0 0 1

0 1 0 1 mask vector

index_value = 0 1

use index to get matched blcok

lookup inside blcok, and get rule_match

rule_match = #2
Figure 3 Classification example of DBS

Figure 4 Block diagram of CN58XX

263

actually implement two versions of HiCuts with different
sizes of leaf node: HiCuts-1 (only 1 rule in each leaf node)
and HiCuts-8 (up to 8 rules in each leaf node). Thus,
there are four implementations for three algorithms to
compare: HiCuts-1, HiCuts-8, HSM, and DBS. All the
algorithms are not only simulated by software, but also
evaluated on a commercial NP platform.

4.1. Experiment Setup

4.1.1 Rule sets and traffic data

The experiments are carried out with publicly
available real-life rule sets[16]. All the packet
classification algorithms are evaluated on three different
types of real-life rule sets, containing Access Control List
(ACL), FireWall (FW) and IP Chain (IPC). We use 12
rule sets with different sizes from several hundreds to
about ten thousand, e.g. the ACL1-10K rule set contains
about 10,000 rules. All rules in the sets are of 5 tuples
with 32-bit source/destination IP addresses, 16-bit
source/destination port numbers, and 8-bit transport layer
protocol. More details about the rule sets can be found
at[16].

The traffic for experiments is generated by Spirent
SmartBits 600B performance analysis system[17], which
supports up to 4 SmartMetrics Gigabit Ethernet ports.
Since there are 3 Gigabit Ethemet ports at the frontend of

the NP testbed, the full throughput of experiments are
limited up to 3 Gbps.

4.1.2. Test bed

The software simulation results are obtained on a PC
(2.0GHz dual-core, 4GB DDRII memory), while all
programs are C-code and complied with -O2 option under
Ubuntu 8.04 Linux system.

The performance of throughput is evaluated on the
Cavium OCTEON 5860 multi-core platform.

Figure 4 shows the block diagram[18] of CN58XX
series multi-core platform. Each Cavium OCTEON
CN5860 processor contains 16 cnMIPS64 running at 750
MHz; the memory include 4 GB DDR2 SDRAM with
2MB L2 cache shared among all cores. There are two
programming modes provided by Cavium SDK: Linux
mode (with a Linux OS) and Simple Executive mode
(without OS supporting). We program codes at the
Simple Executive mode for fast packet processing.

4.2. Performance Results

4.2.1. Memory Access Times

Both average-case and worst-case memory access

times are illustrated in Figure 5 and Figure 6. As Figure 5
shows that DBS has the least average-case access times,
in most rule sets, the average-case access times is only

0

20

40

60

80

100

120

acl1 acl1_1K acl1_5k acl1_10K fw1 fw1_1K fw1_5k fw1_10K ipc1 ipc1_1K ipc1_5k ipc1_10K

M
em

or
y
ac
ce
ss

ti
m
es

Rule Sets

Average casememory access

HiCuts 1 HiCuts 8

HSM DBS

Figure 5 Average-case memory access times

0

20

40

60

80

100

120

acl1 acl1_1K acl1_5k acl1_10K fw1 fw1_1K fw1_5k fw1_10K ipc1 ipc1_1K ipc1_5k ipc1_10K

M
em

or
y
ac
ce
ss

ti
m
es

Rule Sets

Worst casememory access

HiCuts 1 HiCuts 8

HSM DBS

Figure 6 Worst-case memory access times

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

acl1 acl1_1K acl1_5k acl1_10K fw1 fw1_1K fw1_5k fw1_10K ipc1 ipc1_1K ipc1_5k ipc1_10K

M
em

or
y
oc
cu
pi
ed

(K
B)

Rule Sets

Storage performance

HiCuts 1 HiCuts 8

HSM DBS

Figure 7 Memory storage comparison

100

1,000

10,000

100,000

acl1 acl1_1K acl1_5k acl1_10K

M
em

or
y
oc
cu
pi
ed

(K
B)

Rule Sets

Space Scalibility

HiCuts 1 HiCuts 8

HSM DBS

Figure 8 Scalability comparison

264

about 5% ~ 10% of that of HiCuts (both HiCuts-1 and
HiCuts-8), while 10% ~ 20% of that of HSM. From
Figure 6, we can see that the worst-case access time of
DBS is only about 30% of that of HiCuts (both HiCuts-1
and HiCuts-8), while is nearly the same with that of HSM.

We notice that HiCuts-8 needs more memory access
times than HiCuts-1 in average case. This is because the
linear searching inside leaf nodes increases the access
times. Though DBS also adopts linear searching inside
blocks, however, the size of blocks can be keep small
because of the effective partition.

4.2.2. Memory Storage

In Figure 7, we can see that the memory used by DBS

is at least an order of magnitude less than that of HSM
and HiCuts for most of the rule sets, especially for large
ones (such as ACL1-10K, FW1-10K and IPC1-10K).
Take rule set ACL1-10K for example, both HSM and
HiCuts-1 require about 25 ~ 40 MB memory while DBS
only requires about 1 MB. Though with rule set acl1 and
acl_1K, HiCuts-8 can obtain better space performance
than DBS, however, it requires more than DBS in all
other rule sets, especially with large or complex ones.

We also notice that the memory required by all the
algorithms on FW rule sets is larger than ACL and IPC
ones. This indicates that FW rule sets have more

complicated inherent structures. For the same size, rule
sets of FW will generate more complicated sub-spaces in
the multi-dimensional classification space than ACL and
IPC rule sets. We think FW rule sets can validate the
robustness of classification algorithm. With the largest
FW rule set (FW1-10K), only DBS can finish the
processing with requiring less than 10 MB memory, while
both HSM and HiCuts (HiCuts-1 and HiCuts-8) are failed
to finish building for too much storage required (larger
than 4 GB).

4.2.3. Scalability of Spatial Performance

We also evaluated the scalability of storage

requirement for all the three algorithms. We believe this
is another important evaluation factor for packet
classification algorithms because the size of classification
rule set is growing larger quickly while large and cheap
low latency access memory units (SRAM, etc.) are still
not easy to be designed. Thus if one algorithm has a weak
scalability, it will not work well with larger and more
complex rule sets in the future, even it can perform well
at current rule sets.

In Figure 8, we give the result of the spatial
performance with different sizes of the ACL rule sets,
which shows that DBS performs a better scalability than
the other three algorithms. With rule set growing 10 times

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Th
ro
ug
hp

ut
%
(1
00

%
=
3G

bp
s)

Number of Cores

HiCuts 1 HiCuts 8

HSM DBS

Figure 9 Average-case throughput performance
(rules:ACL1-10K, #cores:1~16)

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Th
ro
ug
hp

ut
%
(1
00

%
=
3G

bp
s)

Number of Cores

HiCuts 1 HiCuts 8

HSM DBS

Figure 10 Worst-case throughput performance
(rules:ACL1-10K, #cores:1~16)

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 1518

Th
ro
ug
hp

ut
%
(1
00

%
=
3G

bp
s)

Size of packet

HiCuts 1 HiCuts 8

HSM DBS

Figure 11 Average-case throughput performance
(rules:ACL1-10K, packet: 64 ~1518 B)

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 1518

Th
ro
ug
hp

ut
%
(1
00

%
=
3G

bp
s)

Size of packet

HiCuts 1 HiCuts 8

HSM DBS

Figure 12 Worst-case throughput performance
(rules:ACL1-10K, packet: 64 ~1518 B)

265

larger (from ACL1-1K to ACL1-10K), the memory
occupied by DBS only doubles, while that by other
algorithms become about ten times more.

4.2.4. Throughput Performance

Figure 9~Figure 12 show the evaluation results of

throughput performance on Cavium OCTEON 5860
multi-core platform. The rule set is ACL1-10K, which is
the largest one that HiCuts and HSM can process
successfully.

Figure 9 and Figure 10 show the average-case and
worst-case throughput performance with different number
of cores while the packet size is 64 Bytes. For the
minimum 64 Bytes Ethernet packet, only DBS can
achieve nearly 100% throughput (3Gbps) with 2 cores in
average, while HiCuts-8 and HSM need 8 cores, and
HiCuts-1 cannot achieve the full throughput even with all
the 16 cores. Even in the worst-case, DBS is the only one
which reach 100% throughput with 4 cores.

Figure 11 and Figure 12 show the throughput results
on only 1 MIPS core with different packet sizes (64 Bytes
~ 1518Bytes). When input packet is 128 bytes, DBS can
reach nearly 100% throughput in average-case and higher
than 60% (about 2 Gbps) in worst-case. This result is
about 300% higher than all other three algorithms.

4.3. Discussion

Theoretically, DBS has the same worst-case memory
access time with HiCuts; however, with granular
heuristics, DBS can gain better performance with real-life
rule sets. At the same time, more effective partition can
reduce the storage requirement. This indicated that rule
set based decomposition algorithms may obtain more
advantage than space decomposition ones.

When comparing the spatial performance, we notice
that for small and simple rule sets (acl1 and acl_1K),
DBS requires more storage than HiCuts-8, while for large
or complicated rule sets, DBS works better. There is
several reasons: first the structure of trie uses less internal
nodes when leaf node is large for small rule set; secondly,
DBS use a fixed 216 = 65,536 size lookup tables, this
means a large number of redundancies of the default rule.
While for large and complicated rule sets, trie structure
will need more steps to cut, which need more internal
nodes.

5. Conclusion and Future Work

In this paper, we propose a new bit-level heuristic
algorithm for multi-dimensional packet classification
called Discrete Bit Selection (DBS). Unlike other existing
solutions, this algorithm takes advantage of a heuristic
partition of rule set at bit level, which allows it to better

explore the inherent characteristics in rule set and split
rules more effectively. In order to evaluate the
performance of the proposed algorithm, we implement
DBS on a real NP platform, along with some other well-
known algorithms such as HSM and HiCuts.
Experimental results on Cavium OCTEON NP platform
show that DBS achieves superior temporal and spatial
performance to the existing algorithm in most cases,
especially when testing with large rule sets, which are
expected to be the trend of the next generation Internet.
Specially, DBS also achieves better scalability with
different sizes of rule sets, which indicate it can work
robustly with even larger rule sets in future.

Although the experimental results are encouraging,
current work is still preliminary. In this paper, we set a
determinate number of e-bits; however heuristics can be
utilized to get proper number of e-bits with different
environments (rule sets, platform, etc.). This would dig
out more potential of DBS, and make DBS more practical
and robust with more complicated and more compressive
classification problems. Another interesting problem is
the generation schemes of mask vector. Though there are
many feature selection approaches, a special light-weight
one will be more reliable. And we plan to evaluation DBS
with more rule sets in more types of platforms.

6. Acknowledgements

This work has been supported by the National High-
Tech R&D Program (863 Program) of China under grant
No.2007AA01Z468. The authors would like to thanks
Yaxuan Qi, Fei He, Lianghong Xu and other colleagues
in the Network Security Lab[19] of Tsinghua University,
for their suggestions.

7. References

[1] M. Roesch, “Snort, the de facto standard for intrusion
detection/prevention,” 2006; http://www.snort.org.

[2] V. Paxson, “Bro: A system for detecting network
intruders in real-time,” Comput. Networks, vol. 31, no. 23,
1999, pp. 2435-2463.

[3] M. De Berg, et al., Computational geometry:
algorithms and applications, Springer, 2008.

[4] M. Overmars and A. van der Stappen, “Range
searching and point location among fat objects,” Journal
of Algorithms, vol. 21, no. 3, 1996, pp. 629-656.

[5] T.Y.C. Woo, Modular approach to packet
classification: Algorithms and results,” Proc. IEEE
INFOCOM, IEEE, 2000, pp. 1213-1222.

266

[6] P. Gupta and N. McKeown, “Packet classification
using hierarchical intelligent cuttings,” 1999, pp. 34-41.

[7] B. Yang, et al., “Discrete Bit Selection: Towards a Bit-
level Heuristic Framework for Multi-dimensional Packet
Classification,” Proc. INFOCOM, IEEE, 2009.

[8] “OCTEON™ Plus CN58XX Multi-Core MIPS64
Based SoC Processors,” 2009;
http://www.caviumnetworks.com/OCTEON-
Plus_CN58XX.html.

[9] B. Xu, et al., “HSM: A fast packet classification
algorithm,” Proc. International Conference on Advanced
Information Networking and Applications, Institute of
Electrical and Electronics Engineers Inc., 2005, pp. 987-
992.

[10] P. Gupta and N. McKeown, “Packet classification on
multiple fields,” Computer Communication Review, vol.
29, no. 4, 1999, pp. 147-160.

[11] S. Singh, et al., “Packet Classification Using
Multidimensional Cutting,” Association for Computing
Machinery, 2003, pp. 213-224.

[12] T. Sherwood, et al., “A pipelined memory
architecture for high throughput network processors,”
2003, pp. 288-299.

[13] V. Srinivasan, et al., “Fast and scalable layer four
switching,” ACM New York, NY, USA, 1998, pp. 191-
202.

[14] H. Liu and L. Yu, “Toward integrating feature
selection algorithms for classification and clustering,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 4, 2005, pp. 491-502.

[15] Y. Yang and J. Pedersen, “A comparative study on
feature selection in text categorization,” MORGAN
KAUFMANN PUBLISHERS, INC., 1997, pp. 412-420.

[16] D.E. Taylor and J.S. Turner, “ClassBench: A packet
classification benchmark,” IEEE/ACM Transactions on
Networking, vol. 15, no. 3, 2007, pp. 499-511.

[17] Spirent, “Spirent SmartBits SMB-600 2-slot Portable
Chassis,” 2009;
http://www.smartechconsulting.com/SMB-600-Spirent-
Smartbits-SMB600-2-Slot-Portable-
Chassis?sc=11&category=595.

[18] “OCTEON™ Plus CN58XX Multi-Core MIPS64
Based SoC Processors,” 2009;
http://www.caviumnetworks.com/OCTEON-
Plus_CN58XX.html.

[19] “Network Security Lab,” 2009;
http://security.riit.tsinghua.edu.cn/wiki/NSLab.

267

